论文标题
联合的分裂甘斯
Federated Split GANs
论文作者
论文摘要
移动设备以及它们生成的大量数据是基于机器学习(ML)的应用程序的关键推动者。传统的ML技术已转向新的范式,例如联合(FL)和分裂学习(SL),以改善对用户数据隐私的保护。但是,这些范式通常依靠位于边缘或云中的服务器来训练ML模型的计算重量部分,以避免在客户端设备上排出有限的资源,从而将设备数据暴露于此类第三方。这项工作提出了一种替代方法,可以在用户设备本身中训练计算重的ML模型,该模型位于相应的设备数据。具体来说,我们专注于gan(生成对抗网络),并利用其固有的隐私保护属性。我们在用户设备上使用原始数据训练GAN的判别部分,而生成模型进行了远程训练(例如服务器),而该模型无需访问传感器真实数据。此外,我们的方法可确保训练的计算负载判别模型在用户的设备中共享与其计算功能 - 通过SL的方式共享。我们在实际资源约束设备中实施了计算较重的GAN模型的建议协作培训计划。结果表明,我们的系统可以保留数据隐私,保持短暂的训练时间,并在不受约束的设备(例如云)中产生相同的模型培训准确性。我们的代码可以在https://github.com/yukarisonz/fsl-gan上找到
Mobile devices and the immense amount and variety of data they generate are key enablers of machine learning (ML)-based applications. Traditional ML techniques have shifted toward new paradigms such as federated (FL) and split learning (SL) to improve the protection of user's data privacy. However, these paradigms often rely on server(s) located in the edge or cloud to train computationally-heavy parts of a ML model to avoid draining the limited resource on client devices, resulting in exposing device data to such third parties. This work proposes an alternative approach to train computationally-heavy ML models in user's devices themselves, where corresponding device data resides. Specifically, we focus on GANs (generative adversarial networks) and leverage their inherent privacy-preserving attribute. We train the discriminative part of a GAN with raw data on user's devices, whereas the generative model is trained remotely (e.g., server) for which there is no need to access sensor true data. Moreover, our approach ensures that the computational load of training the discriminative model is shared among user's devices-proportional to their computation capabilities-by means of SL. We implement our proposed collaborative training scheme of a computationally-heavy GAN model in real resource-constrained devices. The results show that our system preserves data privacy, keeps a short training time, and yields same accuracy of model training in unconstrained devices (e.g., cloud). Our code can be found on https://github.com/YukariSonz/FSL-GAN