论文标题

改进了非凸班的全球保证 - 通过等级过度参数化的蒙蒂罗分解

Improved Global Guarantees for the Nonconvex Burer--Monteiro Factorization via Rank Overparameterization

论文作者

Zhang, Richard Y.

论文摘要

我们考虑最大程度地减少两次不同的差异,$ l $ -smooth和$μ$ -strongly的凸目标$ ϕ $,$ n \ times n $ n $阳性半finite矩阵$ m \ succeq0 $,假设最小值$ m^{\ star} $降低了等级$ r^$ r^ll star}遵循burer- monteiro方法,我们相反,在因子矩阵$ x $ size $ n \ times r $上最小化nonconvex objection $ f(x)= ϕ(xx^{t})$。这实际上将变量的数量从$ o(n^{2})$减少到$ O(n)$的少量,并且免费实施了正面的半弱点,但以放弃原始问题的汇总为代价。在本文中,我们证明,如果搜索等级$ r \ ge r^{\ star} $被A \ emph {constant factor}相对于真实等级$ r^{\ star} $过度参数,即,尽管$ r> \ frac {1}} {1} {1} {4} {4} {4}(l/μ-1)优化可以保证从任何初始点到全局最佳的全球收敛。这在先前的等级过度参数阈值为$ r \ ge n $的情况下有了显着改善,在没有光滑度和较强凸度的情况下,我们表明这是敏锐的,但会将变量的数量增加到$ O(n^{2})$。相反,没有排名过度参数化,我们证明,只有当$ ϕ $几乎完美地条件并且条件数量为$ l/μ<3 $时,就可以证明这样的全球保证是可能的。因此,我们得出的结论是,少量的过度参数化可能会导致非凸式居民的理论保证大大改善。

We consider minimizing a twice-differentiable, $L$-smooth, and $μ$-strongly convex objective $ϕ$ over an $n\times n$ positive semidefinite matrix $M\succeq0$, under the assumption that the minimizer $M^{\star}$ has low rank $r^{\star}\ll n$. Following the Burer--Monteiro approach, we instead minimize the nonconvex objective $f(X)=ϕ(XX^{T})$ over a factor matrix $X$ of size $n\times r$. This substantially reduces the number of variables from $O(n^{2})$ to as few as $O(n)$ and also enforces positive semidefiniteness for free, but at the cost of giving up the convexity of the original problem. In this paper, we prove that if the search rank $r\ge r^{\star}$ is overparameterized by a \emph{constant factor} with respect to the true rank $r^{\star}$, namely as in $r>\frac{1}{4}(L/μ-1)^{2}r^{\star}$, then despite nonconvexity, local optimization is guaranteed to globally converge from any initial point to the global optimum. This significantly improves upon a previous rank overparameterization threshold of $r\ge n$, which we show is sharp in the absence of smoothness and strong convexity, but would increase the number of variables back up to $O(n^{2})$. Conversely, without rank overparameterization, we prove that such a global guarantee is possible if and only if $ϕ$ is almost perfectly conditioned, with a condition number of $L/μ<3$. Therefore, we conclude that a small amount of overparameterization can lead to large improvements in theoretical guarantees for the nonconvex Burer--Monteiro factorization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源