论文标题

大规模的大规模MIMO大量访问,并在近场通道上使用混合ADC

Massive Access in Extra Large-Scale MIMO with Mixed-ADC over Near Field Channels

论文作者

Mei, Yikun, Gao, Zhen, Mi, De, Zhou, Mingyu, Zheng, Dezhi, Matthaiou, Michail, Xiao, Pei, Schober, Robert

论文摘要

大型多输入多输出(XL-MIMO)系统的大规模连通性由于近场访问渠道和过于良好的成本而是一个艰巨的问题。在本文中,我们为XL-MIMO系统提出了一个无上行赠款的大规模访问计划,其中采用混合 - 分析到数字转换器(ADC)体系结构来实现访问性能和功耗之间的正确平衡。通过利用空间域结构化的稀疏性和大量访问通道的分段角域群集稀疏性,提出了一个基于压缩感应(CS)的两级正交近似信息传递算法,以有效地解决关节活性检测和通道估计问题。特别是,高精度量化的测量值被利用以执行准确的高参数估计,从而促进了活性检测。此外,我们采用亚阵列估计策略来克服严重的角域能量分散问题,这是由XL-MIMO通道中的近场效应引起的。仿真结果验证了我们所提出的算法比最先进的CS算法的优越性,用于基于XL-MIMO具有混合ADC体系结构的大规模访问。

Massive connectivity for extra large-scale multi-input multi-output (XL-MIMO) systems is a challenging issue due to the near-field access channels and the prohibitive cost. In this paper, we propose an uplink grant-free massive access scheme for XL-MIMO systems, in which a mixed-analog-to-digital converters (ADC) architecture is adopted to strike the right balance between access performance and power consumption. By exploiting the spatial-domain structured sparsity and the piecewise angular-domain cluster sparsity of massive access channels, a compressive sensing (CS)-based two-stage orthogonal approximate message passing algorithm is proposed to efficiently solve the joint activity detection and channel estimation problem. Particularly, high-precision quantized measurements are leveraged to perform accurate hyper-parameter estimation, thereby facilitating the activity detection. Moreover, we adopt a subarray-wise estimation strategy to overcome the severe angular-domain energy dispersion problem which is caused by the near-field effect in XL-MIMO channels. Simulation results verify the superiority of our proposed algorithm over state-of-the-art CS algorithms for massive access based on XL-MIMO with mixed-ADC architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源