论文标题
弗莱明·维奥特过程在硬杀稳定的情况下的均匀收敛
Uniform convergence of the Fleming-Viot process in a hard killing metastable case
论文作者
论文摘要
我们研究了Fleming-Viot过程的长期融合,如果基础过程是亚稳定的扩散,则在达到某种水平时被杀死。通过一个耦合论点,我们以独立于$ n $的指数速率(系统的大小)以及混乱估计的时间繁殖时,建立了Fleming-Viot过程向某些固定度量的长期收敛。
We study the long-time convergence of a Fleming-Viot process, in the case where the underlying process is a metastable diffusion killed when it reaches some level set. Through a coupling argument, we establish the long-time convergence of the Fleming-Viot process toward some stationary measure at an exponential rate independent of $N$, the size of the system, as well as uniform in time propagation of chaos estimates.