论文标题

使用Sobolev数据的Kirchhoff方程式的全局可溶性

The global solvability of the Kirchhoff equation with Sobolev data

论文作者

Matsuyama, Tokio, Neyt, Lenny

论文摘要

我们在Sobolev空间的背景下考虑线性和非线性Cauchy方程。特别是,我们在Sobolev Space中显示了Kirchhoff方程的全球解决方案的全球解决方案,这一问题已经开放了八十年以上。我们的证明是基于针对线性方程的新的均匀估计,该估计是具有时间相关系数和固定点参数。作为我们结果的直接结果,还获得了基尔chhoff方程的全局可溶可在Gevrey空间中具有初始数据的全局可溶性。

We consider linear and non-linear Cauchy equations in the context of Sobolev spaces. In particular, we show the global existence of solutions to the Kirchhoff equation with initial data in the Sobolev spaces, a problem that has been open for more than eighty years. Our proof is based on a new uniform estimate for solutions to the linear equation with time-dependent coefficient and a fixed point argument. As an immediate consequence of our result, the global solvability of the Kirchhoff equation with initial data in the Gevrey spaces is also obtained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源