论文标题
基于AI的恶意软件和勒索软件检测模型
AI-based Malware and Ransomware Detection Models
论文作者
论文摘要
网络犯罪是本世纪的主要数字威胁之一。特别是,勒索软件攻击已大大增加,导致全球损失成本数十亿美元。在本文中,我们训练和测试不同的机器学习和深度学习模型,以进行恶意软件检测,恶意软件分类和勒索软件检测。我们介绍了一种新颖而灵活的解决方案,该解决方案结合了两个用于恶意软件和勒索软件检测的优化模型。我们的结果证明了在检测性能和灵活性方面的一些改进。特别是,我们的组合模型为使用专业化的检测模块提供了更轻松的未来增强功能铺平道路。
Cybercrime is one of the major digital threats of this century. In particular, ransomware attacks have significantly increased, resulting in global damage costs of tens of billion dollars. In this paper, we train and test different Machine Learning and Deep Learning models for malware detection, malware classification and ransomware detection. We introduce a novel and flexible solution that combines two optimized models for malware and ransomware detection. Our results demonstrate some improvements both in terms of detection performances and flexibility. In particular, our combined models pave the way for easier future enhancements using specialized and thus interchangeable detection modules.