论文标题
混合量子自动机电路的体积法阶段的纠缠结构
Entanglement structure in the volume-law phase of hybrid quantum automaton circuits
论文作者
论文摘要
我们研究了经过重复的局部测量的量子自动机电路的弱监测体积阶段的纠缠波动和量子误差校正。我们从数值上观察到,纠缠熵表现出强烈的波动,其指数接近Kardar-Parisi-Zhang(KPZ)通用类别的``生长指数'',与之前研究的其他局部随机电路相同。我们还研究了纯化过程中动态生成的量子误差校正代码,并表明该模型对两种类型的误差具有不同的连续代码距离,这些误差表现出相似的sublrinear powerlaw缩放。我们通过将它们映射到经典粒子模型中的各种量来对这些结果进行解释。我们证明,在体积律阶段,纠缠熵的跨校正校正项和连续代码距离的sublinear幂律缩放既是混合随机动力学的新兴现象。最后,我们表明这种经典的粒子动力学本身具有误差校正能力,并且可以动态生成经典的线性代码。
We study entanglement fluctuations and quantum error correction in the weakly monitored volume-law phase of quantum automaton circuits subject to repeated local measurements. We numerically observe that the entanglement entropy exhibits strong fluctuation with the exponent close to the ``growth exponent'' of the Kardar-Parisi-Zhang (KPZ) universality class, the same as other local random circuits studied previously. We also investigate the dynamically generated quantum error correction code in the purification process and show that this model has different contiguous code distances for two types of errors that exhibit similar sublinear power-law scaling. We give an interpretation of these results by mapping them to various quantities in a classical particle model. We demonstrate that the subleading correction term of the entanglement entropy and the sublinear power-law scaling of the contiguous code distance in the volume-law phase are both the emergent phenomena of the hybrid random dynamics. Finally, we show that this classical particle dynamics itself has a type of error correction ability and can dynamically generate a classical linear code.