论文标题
按$ \ mathbb {h}^n $进行水平曲率的量规球的表征
A characterization of gauge balls in $\mathbb{H}^n$ by horizontal curvature
论文作者
论文摘要
在本文中,我们旨在通过其(非恒定)水平平均曲率的处方来确定Heisenberg Group $ \ Mathbb {H}^n $中规范的水平集。我们建立了一个唯一性结果,以$ \ mathbb {h}^1 $在单一集合的位置的假设下,在$ \ mathbb {h}^n $中,$ n \ geq 2 $在适当的水平脐带超出范围内的$ n \ geq 2 $
In this paper we aim at identifying the level sets of the gauge norm in the Heisenberg group $\mathbb{H}^n$ via the prescription of their (non-constant) horizontal mean curvature. We establish a uniqueness result in $\mathbb{H}^1$ under an assumption on the location of the singular set, and in $\mathbb{H}^n$ for $n\geq 2$ in the proper class of horizontally umbilical hypersurfaces