论文标题
Cobevt:合作鸟的眼景语义分割,稀疏的变压器
CoBEVT: Cooperative Bird's Eye View Semantic Segmentation with Sparse Transformers
论文作者
论文摘要
Bird's Eye View(BEV)语义分割在自动驾驶的空间传感中起着至关重要的作用。尽管最近的文献在BEV地图的理解上取得了重大进展,但它们都是基于基于摄像头的系统的。这些解决方案有时很难处理阻塞或在复杂的交通场景中检测遥远的物体。车辆到车辆(V2V)通信技术使自动驾驶汽车能够共享感应信息,与单一机构系统相比,自动驾驶汽车可显着提高感知性能和范围。在本文中,我们提出了Cobevt,这是可以合作生成BEV MAP预测的第一个通用多代理多摄像机感知框架。为了有效地融合摄像头功能,从基础变压器体系结构中的多视图和多代理数据融合,我们设计了一个融合的轴向注意模块(传真),该模块(传真)捕获了跨视图和代理的局部和全局空间交互。 V2V感知数据集OPV2V的广泛实验表明,Cobevt实现了合作BEV语义细分的最新性能。此外,COBEVT被证明可以推广到其他任务,包括1)使用单代理多摄像机进行BEV分割和2)使用多代理LIDAR系统的3D对象检测,以实时推理速度实现先进的性能。该代码可在https://github.com/derrickxunu/cobevt上找到。
Bird's eye view (BEV) semantic segmentation plays a crucial role in spatial sensing for autonomous driving. Although recent literature has made significant progress on BEV map understanding, they are all based on single-agent camera-based systems. These solutions sometimes have difficulty handling occlusions or detecting distant objects in complex traffic scenes. Vehicle-to-Vehicle (V2V) communication technologies have enabled autonomous vehicles to share sensing information, dramatically improving the perception performance and range compared to single-agent systems. In this paper, we propose CoBEVT, the first generic multi-agent multi-camera perception framework that can cooperatively generate BEV map predictions. To efficiently fuse camera features from multi-view and multi-agent data in an underlying Transformer architecture, we design a fused axial attention module (FAX), which captures sparsely local and global spatial interactions across views and agents. The extensive experiments on the V2V perception dataset, OPV2V, demonstrate that CoBEVT achieves state-of-the-art performance for cooperative BEV semantic segmentation. Moreover, CoBEVT is shown to be generalizable to other tasks, including 1) BEV segmentation with single-agent multi-camera and 2) 3D object detection with multi-agent LiDAR systems, achieving state-of-the-art performance with real-time inference speed. The code is available at https://github.com/DerrickXuNu/CoBEVT.