论文标题
Anderson本地化跨界2D SI系统:过去和现在
Anderson localization crossover in 2D Si systems: The past and the present
论文作者
论文摘要
Using Ioffe-Regel-Mott (IRM) criterion for strong localization crossover in disordered doped 2D electron systems, we theoretically study the relationships among the three key experimentally determined localization quantities: critical density ($n_\mathrm{c}$), critical resistance ($ρ_\mathrm{c}$), and sample quality defined by the effective impurity density (as experimentally diagnosed by the样本移动性,$μ_\ mathrm {m} $,密度高得多)。我们的结果统一了50年(1970-2020)在SI系统中2D金属绝不能过渡(MIT)的实验结果,表明$ N_ \ Mathrm {C} $($ρ_\ Mathrm {C} $)随着样品质量的增加而降低了1970年代的早期实验,以下($μ_\ MATHRM {M} \ SIM 10^3 \ MATHRM {CM}^2/VS $)报告了强大的本地化跨度在$ N_C \ SIM 10^{12} \ Mathrm {cm}^cm {cm}^{ - 2}^{ - 2} $ with $ρ_c\ sim 10^3 emplease(high)hind(hirf) ($μ_\ Mathrm {M}> 10^4 \ Mathrm {cm}^2/vs $),报告$ n_c \ sim 10^{11} \ Mathrm {cm}^{ - 2} $,带有$ρ_C> 10^4Ω$。我们的理论将2D MIT建立为主要是筛选的库仑疾病驱动的强定位跨界现象,该现象发生在不同样本依赖性的临界密度和临界电阻下,因此在50年内统一了SI 2D MIT现象。
Using Ioffe-Regel-Mott (IRM) criterion for strong localization crossover in disordered doped 2D electron systems, we theoretically study the relationships among the three key experimentally determined localization quantities: critical density ($n_\mathrm{c}$), critical resistance ($ρ_\mathrm{c}$), and sample quality defined by the effective impurity density (as experimentally diagnosed by the sample mobility, $μ_\mathrm{m}$, at densities much higher than critical densities). Our results unify experimental results for 2D metal-insulator transitions (MIT) in Si systems over a 50-year period (1970-2020), showing that $n_\mathrm{c}$ ($ρ_\mathrm{c}$) decrease (increase) with increasing sample quality, explaining why the early experiments in the 1970s, using low-quality samples ($μ_\mathrm{m} \sim 10^3 \mathrm{cm}^2/Vs$) reported strong localization crossover at $n_c \sim 10^{12} \mathrm{cm}^{-2}$ with $ρ_c \sim 10^3Ω$ whereas recent experiments (after 1995), using high-quality samples ($μ_\mathrm{m} >10^4 \mathrm{cm}^2/Vs$), report $n_c \sim 10^{11} \mathrm{cm}^{-2}$ with $ρ_c>10^4Ω$. Our theory establishes the 2D MIT to be primarily a screened Coulomb disorder-driven strong localization crossover phenomenon, which happens at different sample-dependent critical density and critical resistance, thus unifying Si 2D MIT phenomena over a 50-year period.