论文标题
结构和功能连接组的统一嵌入通过功能约束的结构图变异自动编码器
Unified Embeddings of Structural and Functional Connectome via a Function-Constrained Structural Graph Variational Auto-Encoder
论文作者
论文摘要
图理论分析已成为建模大脑功能和解剖连通性的标准工具。随着连接组学的出现,主要的图形或感兴趣的网络是结构连接组(源自DTI拖拉术)和功能连接组(源自静止状态fMRI)。但是,大多数已发表的连接组研究都集中在结构或功能连接上,但是在同一数据集中可用的情况下,它们之间的互补信息可以共同利用,以提高我们对大脑的理解。为此,我们提出了一个功能约束的结构图变分自动编码器(FCS-GVAE),能够以无监督的方式合并功能和结构连接的信息。这导致了一个关节的低维嵌入,该嵌入建立了一个统一的空间坐标系,用于在不同受试者之间进行比较。我们使用公开可用的OASIS-3阿尔茨海默氏病(AD)数据集评估了我们的方法,并表明为最佳编码功能性脑动力学而言,有必要的配方是必要的。此外,与不使用互补连接信息的方法相比,提出的联合嵌入方法可以更准确地区分不同的患者子选集。
Graph theoretical analyses have become standard tools in modeling functional and anatomical connectivity in the brain. With the advent of connectomics, the primary graphs or networks of interest are structural connectome (derived from DTI tractography) and functional connectome (derived from resting-state fMRI). However, most published connectome studies have focused on either structural or functional connectome, yet complementary information between them, when available in the same dataset, can be jointly leveraged to improve our understanding of the brain. To this end, we propose a function-constrained structural graph variational autoencoder (FCS-GVAE) capable of incorporating information from both functional and structural connectome in an unsupervised fashion. This leads to a joint low-dimensional embedding that establishes a unified spatial coordinate system for comparing across different subjects. We evaluate our approach using the publicly available OASIS-3 Alzheimer's disease (AD) dataset and show that a variational formulation is necessary to optimally encode functional brain dynamics. Further, the proposed joint embedding approach can more accurately distinguish different patient sub-populations than approaches that do not use complementary connectome information.