论文标题

SNERF:3D场景的程式化神经隐式表示

SNeRF: Stylized Neural Implicit Representations for 3D Scenes

论文作者

Nguyen-Phuoc, Thu, Liu, Feng, Xiao, Lei

论文摘要

本文提出了一种程式化的新型视图合成方法。将最新的风格化方法应用于新颖的视图框架上,通常由于缺乏跨视图的一致性而引起抖动的伪像。因此,本文研究了3D场景风格,该风格为一致的新型视图综合提供了强烈的感应偏见。具体来说,我们采用新兴的神经辐射场(NERF)作为我们选择的3D场景表示形式,因为它们有能力为各种场景提供高质量的新颖观点。但是,由于从NERF呈现新颖的视图需要大量样本,因此训练风格化的NERF需要大量的GPU内存,这超出了现成的GPU容量。我们引入了一种新的培训方法,通过交替进行NERF和样式优化步骤来解决此问题。这样的方法使我们能够充分利用自己的硬件内存能力,既可以以更高的分辨率生成图像,又采用了更具表现力的图像样式传输方法。我们的实验表明,我们的方法生成了针对各种内容的风格化的NERF,包括室内,室外和动态场景,并综合具有跨视图一致性的高质量的小说视图。

This paper presents a stylized novel view synthesis method. Applying state-of-the-art stylization methods to novel views frame by frame often causes jittering artifacts due to the lack of cross-view consistency. Therefore, this paper investigates 3D scene stylization that provides a strong inductive bias for consistent novel view synthesis. Specifically, we adopt the emerging neural radiance fields (NeRF) as our choice of 3D scene representation for their capability to render high-quality novel views for a variety of scenes. However, as rendering a novel view from a NeRF requires a large number of samples, training a stylized NeRF requires a large amount of GPU memory that goes beyond an off-the-shelf GPU capacity. We introduce a new training method to address this problem by alternating the NeRF and stylization optimization steps. Such a method enables us to make full use of our hardware memory capacity to both generate images at higher resolution and adopt more expressive image style transfer methods. Our experiments show that our method produces stylized NeRFs for a wide range of content, including indoor, outdoor and dynamic scenes, and synthesizes high-quality novel views with cross-view consistency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源