论文标题

5D,边界和全息图中的不可变形缺陷

Non-Invertible Defects in 5d, Boundaries and Holography

论文作者

Damia, Jeremias Aguilera, Argurio, Riccardo, Garcia-Valdecasas, Eduardo

论文摘要

我们表明,在5D中具有立方Chern-Simons项的Abelian仪表域的非常简单的理论具有无限数量的不可依赖的共同含量两个缺陷。它们是通过与任何合理角度的合适的拓扑场理论给断裂的1型对称对称性的对称算子配饰的。我们进一步讨论在4D边界存在的情况下,尤其是在全息环境中。在那里,我们发现,将大量缺陷推向边界时,有不同的命运。最值得注意的是,它们可以与ABJ异常成为边界理论的一种不可逆转的缺陷。

We show that very simple theories of abelian gauge fields with a cubic Chern-Simons term in 5d have an infinite number of non-invertible co-dimension two defects. They arise by dressing the symmetry operators of the broken electric 1-form symmetry with a suitable topological field theory, for any rational angle. We further discuss the same theories in the presence of a 4d boundary, and more particularly in a holographic setting. There we find that the bulk defects, when pushed to the boundary, have various different fates. Most notably, they can become co-dimension one non-invertible defects of a boundary theory with an ABJ anomaly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源