论文标题
不要过分贴上历史 - 递归时间序列数据扩展
Don't overfit the history -- Recursive time series data augmentation
论文作者
论文摘要
时间序列观察可以看作是对我们通常不知道的规则控制的基本动力系统的实现。对于时间序列学习任务,我们需要了解我们将模型符合可用数据,这是一个独特的历史记录。对单个实现的培训通常会导致严重的过度适应缺乏概括。为了解决这个问题,我们引入了一个通用的递归框架,用于时间序列增强,我们称之为递归插值方法,称为边缘。使用所有先前值的递归插值函数生成新样本,以使增强样品保留原始固有的时间序列动力学。我们执行理论分析以表征所提出的边缘并保证其测试性能。我们将RIM应用于不同的现实世界时代序列案例,以在有关回归,分类和强化学习任务的非官能数据上实现强大的绩效。
Time series observations can be seen as realizations of an underlying dynamical system governed by rules that we typically do not know. For time series learning tasks, we need to understand that we fit our model on available data, which is a unique realized history. Training on a single realization often induces severe overfitting lacking generalization. To address this issue, we introduce a general recursive framework for time series augmentation, which we call Recursive Interpolation Method, denoted as RIM. New samples are generated using a recursive interpolation function of all previous values in such a way that the enhanced samples preserve the original inherent time series dynamics. We perform theoretical analysis to characterize the proposed RIM and to guarantee its test performance. We apply RIM to diverse real world time series cases to achieve strong performance over non-augmented data on regression, classification, and reinforcement learning tasks.