论文标题
轻度障碍之间的最大分支布朗运动
Maximum of Branching Brownian Motion among mild obstacles
论文作者
论文摘要
我们研究了一个尺寸分支布朗尼运动的时间$ t $,其最大粒子的高度,其依赖于空间的分支速率。分支率在有限的许多间隔(障碍)$ t $中设置为零。我们获得了最大最大第一阶的几乎渐近造型,描述粒子达到此高度的路径并描述其对障碍物的大小和位置的依赖性。
We study the height of the maximal particle at time $t$ of a one dimensional branching Brownian motion with a space-dependent branching rate. The branching rate is set to zero in finitely many intervals (obstacles) of order $t$. We obtain almost sure asymptotics of the first order of the maximum, describe the path of a particle reaching this height and describe its dependence on the size and location of the obstacles.