论文标题

通过对齐多米汉顿光谱的对齐方式的部分形状相似性

Partial Shape Similarity via Alignment of Multi-Metric Hamiltonian Spectra

论文作者

Bensaïd, David, Bracha, Amit, Kimmel, Ron

论文摘要

在众多计算机视觉应用中,评估非刚性形状的相似性是一项基本任务。在这里,我们提出了一种新型的公理方法,以匹配跨形状的相似区域。匹配类似区域的配制为与Laplace-Beltrami操作员(LBO)密切相关的运算符的比对。该方法的主要新颖性是考虑具有多个指标的歧管上定义的差分运算符。指标的选择与基本形状属性有关,同时考虑到不同指标下的同一歧管,可以将其视为从不同的角度分析了基本歧管。具体而言,我们检查了标准不变的度量和相应的尺度不变的拉普拉斯 - 贝特拉米操作员(Si-LBO)以及常规度量和常规LBO。我们证明,规模不变的度量强调了铰接形状中重要语义特征的位置。因此,Si-LBO的截断光谱更好地捕获了局部弯曲的区域,并补充了常规LBO截断光谱中封装的全局信息。我们表明,在标准基准测试时,与这些双光谱匹配的公理框架的表现优于竞争的公理框架。我们介绍了一个新的数据集,并将所提出的方法与跨数据库配置中的基于最新学习的方法进行了比较。具体而言,我们表明,在对一个数据集进行培训并在另一个数据集上进行测试时,提出的不涉及培训的公理方法优于深度学习替代方案。

Evaluating the similarity of non-rigid shapes with significant partiality is a fundamental task in numerous computer vision applications. Here, we propose a novel axiomatic method to match similar regions across shapes. Matching similar regions is formulated as the alignment of the spectra of operators closely related to the Laplace-Beltrami operator (LBO). The main novelty of the proposed approach is the consideration of differential operators defined on a manifold with multiple metrics. The choice of a metric relates to fundamental shape properties while considering the same manifold under different metrics can thus be viewed as analyzing the underlying manifold from different perspectives. Specifically, we examine the scale-invariant metric and the corresponding scale-invariant Laplace-Beltrami operator (SI-LBO) along with the regular metric and the regular LBO. We demonstrate that the scale-invariant metric emphasizes the locations of important semantic features in articulated shapes. A truncated spectrum of the SI-LBO consequently better captures locally curved regions and complements the global information encapsulated in the truncated spectrum of the regular LBO. We show that matching these dual spectra outperforms competing axiomatic frameworks when tested on standard benchmarks. We introduced a new dataset and compare the proposed method with the state-of-the-art learning based approach in a cross-database configuration. Specifically, we show that, when trained on one data set and tested on another, the proposed axiomatic approach which does not involve training, outperforms the deep learning alternative.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源