论文标题

正交组的较高维度的Chevalley限制定理

A higher-dimensional Chevalley restriction theorem for orthogonal groups

论文作者

Song, Lei, Xia, Xiaopeng, Xu, Jinxing

论文摘要

我们证明了对正交群体的较高维度Chevalley限制定理,该定理由Chen和Ngô猜想。在特征$ p> 2 $中,我们还证明了较弱的声明。在特征$ 0 $中,定理意味着该组对角线伴随动作的通勤方案的分类商是不可或缺的和正常的。作为应用,我们推断出Pfaffian的一些痕量身份和一定的乘法性质,而不是任意交换代数。

We prove a higher-dimensional Chevalley restriction theorem for orthogonal groups, which was conjectured by Chen and Ngô for reductive groups. In characteristic $p>2$, we also prove a weaker statement. In characteristic $0$, the theorem implies that the categorical quotient of a commuting scheme by the diagonal adjoint action of the group is integral and normal. As applications, we deduce some trace identities and a certain multiplicative property of the Pfaffian over an arbitrary commutative algebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源