论文标题

在车间安排中学习机器排列的质量

Learning the Quality of Machine Permutations in Job Shop Scheduling

论文作者

Corsini, Andrea, Calderara, Simone, Dell'Amico, Mauro

论文摘要

近年来,机器学习(ML)所证明的权力越来越吸引了优化社区的兴趣,该社区开始利用ML来增强和自动化算法的设计。最近用ML解决的一个组合优化问题是车间调度问题(JSP)。 JSP上使用ML的大多数作品都专注于深度增强学习(DRL),并且只有少数人利用监督的学习技术。避免有监督学习的反复出现的原因似乎是施放正确的学习任务的困难,即预测的有意义以及如何获得标签。因此,我们首先提出了一项新颖的监督学习任务,旨在预测机器排列的质量。然后,我们设计了一种原始方法来估计这种质量,并使用这些估计来创建准确的顺序深度学习模型(二进制精度高于95%)。最后,我们通过凭经验证明了通过提高受文献作品启发的简单禁忌搜索算法的性能来预测机器排列质量的价值。

In recent years, the power demonstrated by Machine Learning (ML) has increasingly attracted the interest of the optimization community that is starting to leverage ML for enhancing and automating the design of algorithms. One combinatorial optimization problem recently tackled with ML is the Job Shop scheduling Problem (JSP). Most of the works on the JSP using ML focus on Deep Reinforcement Learning (DRL), and only a few of them leverage supervised learning techniques. The recurrent reasons for avoiding supervised learning seem to be the difficulty in casting the right learning task, i.e., what is meaningful to predict, and how to obtain labels. Therefore, we first propose a novel supervised learning task that aims at predicting the quality of machine permutations. Then, we design an original methodology to estimate this quality, and we use these estimations to create an accurate sequential deep learning model (binary accuracy above 95%). Finally, we empirically demonstrate the value of predicting the quality of machine permutations by enhancing the performance of a simple Tabu Search algorithm inspired by the works in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源