论文标题
采取有效的动作旋转泡沫的连续限制
Towards effective actions for the continuum limit of spin foams
论文作者
论文摘要
自旋泡沫是由通过plebanski作用表达的经典重力的量化引起的。与自旋泡沫连续限制有关的关键开放问题是是否复制了一般相对论以及可能出现哪种类型的校正。作为自旋泡沫动力学的中心成分,对区域雷格动作的连续限制的最新结果表明,与面积指标而不是长度度量的动作密切相关。受这些结果的启发,在经过修改的Plebanski理论的框架内,我们为地区指标建立了一系列候选行为。这些动作有望描述自旋泡沫的连续极限,并为探索自旋泡沫大规模动力学的现象学方面提供了一个起点。更普遍地,他们为探索从长度到区域指标的重力扩大的后果奠定了基础。我们构建的动作导致了长度度量的有效动作,描述了爱因斯坦 - 韦尔重力的非本地和无鬼影。
Spin foams arise from a quantization of classical gravity expressed via the Plebanski action. Key open questions related to the continuum limit of spin foams are whether general relativity is reproduced and what type of corrections could emerge. As a central component for spin foam dynamics, recent results on the continuum limit of the Area Regge action suggest a close relation with actions for area metrics instead of a length metric. Inspired by these results, within the framework of modified Plebanski theory we construct a family of candidate actions for area metrics. These actions are expected to describe the continuum limit of spin foams and provide a starting point to explore phenomenological aspects of the large-scale dynamics of spin foams. More generally, they set the stage for exploring consequences of an enlargement of the configuration space for gravity from length to area metrics. The actions we construct lead to an effective action for the length metric, describing a non-local and ghost-free version of Einstein-Weyl gravity.