论文标题
中间符号$ q $ functions
Intermediate symplectic $Q$-functions
论文作者
论文摘要
我们在Schur的$ Q $ functions和S. Okada的Simplectic $ Q $ functions之间介绍了一个中间的Laurent多项式家庭。它也可以被视为Proctor中间符号字符的$ Q $功能类似物,并被任命为中间符号$ Q $ functions的家族。我们还得出了Laurent多项式的Tableau-sum公式和Józefiak-pragacz型Pfaffian公式。
We introduce an intermediate family of Laurent polynomials between Schur's $Q$-functions and S. Okada's symplectic $Q$-functions. It can also be regarded as a $Q$-function analogue of Proctor's intermediate symplectic characters, and is named the family of intermediate symplectic $Q$-functions. We also derive a tableau-sum formula and a Józefiak-Pragacz-type Pfaffian formula of the Laurent polynomials.