论文标题
通过对抗性时间图表示学习动态社区检测
Dynamic Community Detection via Adversarial Temporal Graph Representation Learning
论文作者
论文摘要
动态的社区检测已成为一种强大的工具,可以通过识别牢固连接的节点集来量化动态大脑网络连接模式的变化。但是,随着要处理的网络科学问题和网络数据逐渐变得更加复杂,它正在等待一种更好的方法,可以从动态网络数据中有效学习低维表示并揭示其潜在功能,该功能会随着时间的流逝而在大脑网络中随时间而变化。在这项工作中,提出了一个对抗性的时间图表示学习(ATGRL)框架,以从一小部分脑网络数据样本中检测动态社区。它采用新型的时间图注意网络作为编码器,以通过空间和时间维度的注意机制捕获更有效的时空特征。此外,该框架还采用对抗性训练来指导学习时间图表示的学习并优化可测量的模块化损失,以最大程度地提高社区的模块化。证明了现实世界大脑网络数据集的实验以显示这种新方法的有效性。
Dynamic community detection has been prospered as a powerful tool for quantifying changes in dynamic brain network connectivity patterns by identifying strongly connected sets of nodes. However, as the network science problems and network data to be processed become gradually more sophisticated, it awaits a better method to efficiently learn low dimensional representation from dynamic network data and reveal its latent function that changes over time in the brain network. In this work, an adversarial temporal graph representation learning (ATGRL) framework is proposed to detect dynamic communities from a small sample of brain network data. It adopts a novel temporal graph attention network as an encoder to capture more efficient spatio-temporal features by attention mechanism in both spatial and temporal dimensions. In addition, the framework employs adversarial training to guide the learning of temporal graph representation and optimize the measurable modularity loss to maximize the modularity of community. Experiments on the real-world brain networks datasets are demonstrated to show the effectiveness of this new method.