论文标题
小型双线性对施罗丁方程的双线性控制,并应用于旋转线性分子
Small-time bilinear control of Schrödinger equations with application to rotating linear molecules
论文作者
论文摘要
在[14]中,杜卡(Duca)和nersesyan在d维圆环$ \ mathbb {t}^d $上证明了非线性schrödinger方程的小型可控性属性。在本文中,我们从封闭的riemannian歧管开始研究类似的属性。然后,我们专注于二维球体$ s^2 $,该$ s^2 $对旋转线性顶部的双线性控制进行了建模:作为推论,我们在$ s^2 $的laplacian的特定特征函数中,在特定特征函数中获得了任意小时的近似可控性。
In [14] Duca and Nersesyan proved a small-time controllability property of nonlinear Schrödinger equations on a d-dimensional torus $\mathbb{T}^d$. In this paper we study a similar property, in the linear setting, starting from a closed Riemannian manifold. We then focus on the 2-dimensional sphere $S^2$, which models the bilinear control of a rotating linear top: as a corollary, we obtain the approximate controllability in arbitrarily small times among particular eigenfunctions of the Laplacian of $S^2$.