论文标题
从头开始核结构计算预测融合能量的机器学习
Machine Learning for the Prediction of Converged Energies from Ab Initio Nuclear Structure Calculations
论文作者
论文摘要
通过现代的AB从头算法可以访问的有限模型空间以外的核可观察物的预测,例如无核壳模型,在核结构理论中构成了具有挑战性的任务。它需要可靠的工具,以外推出可观察到的无限多体希尔伯特空间以及可靠的不确定性估计。在这项工作中,我们提出了一种通用机器学习工具,能够捕获独立于核和相互作用的可观察到的特定收敛模式。我们表明,一旦接受了几个体系的训练,人造神经网络就可以为广泛的光核产生准确的预测。特别是,我们根据2H,3H和4HE的训练数据,讨论了6LI,12C和16O的基础状态能量的神经网络预测,并将其与经典的外推进行比较。
The prediction of nuclear observables beyond the finite model spaces that are accessible through modern ab initio methods, such as the no-core shell model, pose a challenging task in nuclear structure theory. It requires reliable tools for the extrapolation of observables to infinite many-body Hilbert spaces along with reliable uncertainty estimates. In this work we present a universal machine learning tool capable of capturing observable-specific convergence patterns independent of nucleus and interaction. We show that, once trained on few-body systems, artificial neural networks can produce accurate predictions for a broad range of light nuclei. In particular, we discuss neural-network predictions of ground-state energies from no-core shell model calculations for 6Li, 12C and 16O based on training data for 2H, 3H and 4He and compare them to classical extrapolations.