论文标题
在数据驱动的机会限制学习中,用于混合组合优化问题
On data-driven chance constraint learning for mixed-integer optimization problems
论文作者
论文摘要
在处理现实世界优化问题时,决策者通常会面临与部分信息,未知参数或这些问题之间的复杂关系与问题决策变量相关的高度不确定性。在这项工作中,我们开发了一种新颖的机会限制学习(CCL)方法,重点是混合组合线性优化问题,从而结合了机会约束和约束学习文献的思想。机会约束为要实现的单个或一组约束设定了概率置信度,而约束学习方法旨在通过预测模型对问题变量之间的功能关系进行建模。当我们需要为其响应变量设定进一步的界限时,就会出现一个主要问题之一:实现这些变量直接与预测模型的准确性及其概率行为有关。从这个意义上讲,CCL利用可线化的机器学习模型来估计学习变量的条件分位数,从而为机会限制提供了数据驱动的解决方案。已经开发了一个开放式软件,可以由从业人员使用。此外,在两个现实世界中的案例研究中已经测试了CCL的好处,并证明当设定概率界限以用于学习的限制时,如何将鲁棒性添加到最佳解决方案中。
When dealing with real-world optimization problems, decision-makers usually face high levels of uncertainty associated with partial information, unknown parameters, or complex relationships between these and the problem decision variables. In this work, we develop a novel Chance Constraint Learning (CCL) methodology with a focus on mixed-integer linear optimization problems which combines ideas from the chance constraint and constraint learning literature. Chance constraints set a probabilistic confidence level for a single or a set of constraints to be fulfilled, whereas the constraint learning methodology aims to model the functional relationship between the problem variables through predictive models. One of the main issues when establishing a learned constraint arises when we need to set further bounds for its response variable: the fulfillment of these is directly related to the accuracy of the predictive model and its probabilistic behaviour. In this sense, CCL makes use of linearizable machine learning models to estimate conditional quantiles of the learned variables, providing a data-driven solution for chance constraints. An open-access software has been developed to be used by practitioners. Furthermore, benefits from CCL have been tested in two real-world case studies, proving how robustness is added to optimal solutions when probabilistic bounds are set for learned constraints.