论文标题
从比哈利德离子Brhbr-}制备过渡状态复合物BRHBR的振动准结合状态
Preparation of Vibrational Quasi-Bound States of the Transition State Complex BrHBr from the Bihalide Ion BrHBr-}
论文作者
论文摘要
允许在量子控制方案应用于化学反应的情况下,允许分子系统制备特别振动状态的有效策略很重要。在本文中,我们提出了共线性过渡状态复合物的准振动状态$ \ ce {brhbr} $,从比加利德式离子$ \ ce {brhbr - } $的振动状态,有利于$ \ ce {brhbr} $的债券选择性断裂。结果显示的结果补充了我们在上一篇论文中报告的研究[A。 J.Garzón-Ramírez,J。G。López和C. A. Arango,\ textit {int。 J. Quantum Chem。},2018年,\ textbf {24},e25784],其中我们证明了使用反应性共振的线性组合来控制截面BRHBR的键选择性分解的可行性。我们采用了偶极矩表面,在QCISD/\ textit {d-ag-cc-pvtz}理论水平上进行了模拟,以模拟$ \ ce {brhbr - } $地面振动状态与启发式优化的超持续式振动式脉动的启发序列,从$ \ ce {brhbr - } $的振动特征状态的Brhbr共鸣。我们的模拟结果表明,最终状态捕获目标状态最相关的特征,其描述级别不同,具体取决于所使用的激光脉冲的顺序。我们还讨论了改善目标状态描述的方法以及我们方法的可能局限性。
Efficient strategies that allow the preparation of molecular systems in particular vibrational states are important in the application of quantum control schemes to chemical reactions. In this paper, we propose the preparation of quasi--bound vibrational states of the collinear transition state complex $\ce{BrHBr}$, from vibrational states of the bihalide ion $\ce{BrHBr-}$, that favor the bond selective breakage of $\ce{BrHBr}$. The results shown complement the investigation that we reported in a previous paper, [A. J. Garzón-Ramírez, J. G. López and C. A. Arango, \textit{Int. J. Quantum Chem.}, 2018, \textbf{24}, e25784], in which we demonstrated the feasibility of controlling the bond selective decomposition of the collinear BrHBr using linear combinations of reactive resonances. We employed a dipole moment surface, calculated at the QCISD/\textit{d-aug-cc-pVTZ} level of theory, to simulate the interaction of the $\ce{BrHBr-}$ ground vibrational state with heuristically optimized sequences of ultrashort infrared linear chirped laser pulses to achieve a target vibrational state, resulting from expanding a chosen linear combination of reactive resonances of BrHBr in terms of vibrational eigenstates of $\ce{BrHBr-}$. The results of our simulations show final states that capture the most relevant features of the target state with different levels of description depending on the sequence of laser pulses employed. We also discuss ways of improving the description of the target state and possible limitations of our approach.