论文标题
来自cosets的新新混蛋CFT
New meromorphic CFTs from cosets
论文作者
论文摘要
近年来,人们可以理解,可以通过将COSET结构应用于Meromoromormormormormormormorphic CFT来发现新的理性CFT。在这里,我们将这种方法扭转,并表明固定构建以及$ C \ leq 24 $的Meromorormormormorormormorormorormorormorormorormorormororthic构建可用于预测具有$ c \ geq 32 $的新杂化CFT的存在,其Kac-Moody代数的kac-moody代数是非敏感性和/或以上的级别。我们使用三个字符的固定关系,提出了34个无限的Meromorphic Theories,其中包含大型中央费用,以及$ C = 32 $和$ C = 40 $的46个理论。
In recent years it has been understood that new rational CFTs can be discovered by applying the coset construction to meromorphic CFTs. Here we turn this approach around and show that the coset construction, together with the classification of meromorphic CFT with $c\leq 24$, can be used to predict the existence of new meromorphic CFTs with $c\geq 32$ whose Kac-Moody algebras are non-simply-laced and/or at levels greater than 1. This implies they are non-lattice theories. Using three-character coset relations, we propose 34 infinite series of meromorphic theories with arbitrarily large central charge, as well as 46 theories at $c=32$ and $c=40$.