论文标题
关于顶点操作员代数束的植物群体叶子上的植物
On holonomy groupoid of vertex operator algebra bundles on foliations
论文作者
论文摘要
对于在光滑复杂的歧管$ m $上定义的叶片$ \ f $,我们介绍了顶点操作员代数$ v $ v $ b bundles的类别,该部分由代数伸展的$ v $ v $ - module $ w $ w $ valued Dictines提供的元素提供的部分提供。给出了此类束的固有坐标独立的公式。最后,我们确定了顶点操作员代数$ v $ bundle的各节空间的共同体,并带有Vertex操作员代数共生式groupoid $ hol(m,\ f)$。
For a foliation $\F$ defined on a smooth complex manifold $M$ we introduce the category of vertex operator algebra $V$ bundles with sections provided by vectors of elements of the space of algebraically extended $V$-module $W$-valued differentials. An intrinsic coordinate-independent formulation for such bundles is given. Finally, we identify the cohomology of the spaces of sections for a vertex operator algebra $V$ bundle with vertex operator algebra cohomology of the holonomy groupoid $Hol(M, \F)$.