论文标题

张量训练交叉近似的误差分析

Error Analysis of Tensor-Train Cross Approximation

论文作者

Qin, Zhen, Lidiak, Alexander, Gong, Zhexuan, Tang, Gongguo, Wakin, Michael B., Zhu, Zhihui

论文摘要

张量火车的分解因其高维张量的简洁表示,在机器学习和量子物理学中广泛使用,克服了维度的诅咒。交叉近似 - 从近似形式开发用于从一组选定的行和列中表示矩阵,这是一种有效的方法,用于构建来自其几个条目的张量的张量列器分解。虽然张量列车交叉近似在实际应用中取得了显着的性能,但迄今为止,其理论分析尤其是在近似误差方面的理论分析。据我们所知,现有结果仅提供元素近似准确性的保证,这会导致扩展到整个张量时的束缚。在本文中,我们通过提供精确测量和嘈杂测量的整个张量来提供准确性来弥合这一差距。我们的结果说明了选定的子观察器的选择如何影响交叉近似的质量,并且模型误差和/或测量误差引起的近似误差可能不会随着张量的顺序而成倍增长。这些结果通过数值实验来验证,并且可能对高阶张量的交叉近似值(例如在量子多体状态的描述中遇到的)具有重要意义。

Tensor train decomposition is widely used in machine learning and quantum physics due to its concise representation of high-dimensional tensors, overcoming the curse of dimensionality. Cross approximation-originally developed for representing a matrix from a set of selected rows and columns-is an efficient method for constructing a tensor train decomposition of a tensor from few of its entries. While tensor train cross approximation has achieved remarkable performance in practical applications, its theoretical analysis, in particular regarding the error of the approximation, is so far lacking. To our knowledge, existing results only provide element-wise approximation accuracy guarantees, which lead to a very loose bound when extended to the entire tensor. In this paper, we bridge this gap by providing accuracy guarantees in terms of the entire tensor for both exact and noisy measurements. Our results illustrate how the choice of selected subtensors affects the quality of the cross approximation and that the approximation error caused by model error and/or measurement error may not grow exponentially with the order of the tensor. These results are verified by numerical experiments, and may have important implications for the usefulness of cross approximations for high-order tensors, such as those encountered in the description of quantum many-body states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源