论文标题

部分可观测时空混沌系统的无模型预测

Lifting Bratteli Diagrams between Krajewski Diagrams: Spectral Triples, Spectral Actions, and $AF$ algebras

论文作者

Masson, Thierry, Nieuviarts, Gaston

论文摘要

在本文中,我们提出了一个框架,以在定义$ af $ - 代数的电感序列上构造光谱三元组序列。本文的目的之一是将Bratteli图的箭头提起到Krajewski图之间的箭头。比较了与这些箭头相关的两个光谱三元组相关的非交通量规场理论的光谱作用(由交换频谱三重量张开,使我们处于几乎交换歧管的背景下)。本文是对先前的后续文章,其中该程序在基于衍生的差分计算的框架中被定义和物理说明,但是本文更多地关注数学结构而不试图研究物理含义。

In this paper, we present a framework to construct sequences of spectral triples on top of an inductive sequence defining an $AF$-algebra. One aim of this paper is to lift arrows of a Bratteli diagram to arrows between Krajewski diagrams. The spectral actions defining Non-commutative Gauge Field Theories associated to two spectral triples related by these arrows are compared (tensored by a commutative spectral triple to put us in the context of Almost Commutative manifolds). This paper is a follow up of a previous one in which this program was defined and physically illustrated in the framework of the derivation-based differential calculus, but the present paper focuses more on the mathematical structure without trying to study the physical implications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源