论文标题

部分可观测时空混沌系统的无模型预测

Activity networks determine project performance

论文作者

Vazquez, Alexei, Pozzana, Iacopo, Kalogridis, Georgios, Ellinas, Christos

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Projects are characterised by activity networks with a critical path, a sequence of activities from start to end, that must be finished on time to complete the project on time. Watching over the critical path is the project manager's strategy to ensure timely project completion. This intense focus on a single path contrasts the broader complex structure of the activity network, and is due to our poor understanding on how that structure influences this critical path. Here, we use a generative model and detailed data from 77 real world projects (plus 10 billion dollars total budget) to demonstrate how this network structure forces us to look beyond the critical path. We introduce a duplication-split model of project schedules that yields (i) identical power-law in- and-out degree distributions and (ii) a vanishing fraction of critical path activities with schedule size. These predictions are corroborated in real projects. We demonstrate that the incidence of delayed activities in real projects is consistent with the expectation from percolation theory in complex networks. We conclude that delay propagation in project schedules is a network property and it is not confined to the critical path.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源