论文标题

部分可观测时空混沌系统的无模型预测

Uncertainty-Aware Mixed-Variable Machine Learning for Materials Design

论文作者

Zhang, Hengrui, Chen, Wei Wayne, Iyer, Akshay, Apley, Daniel W., Chen, Wei

论文摘要

数据驱动的设计显示了加速材料发现的希望,但由于搜索化学,结构和合成方法的庞大设计空间的艰巨成本,因此具有挑战性。贝叶斯优化(BO)采用不确定性的机器学习模型来选择有前途的设计来评估,从而降低成本。但是,在材料设计中特别感兴趣的具有混合数值和分类变量的BO尚未得到很好的研究。在这项工作中,我们调查了使用混合变量对机器学习的不确定性量化的常见主义者和贝叶斯方法。然后,我们使用每个组的流行代表模型,随机的森林基于森林的LOLO模型(频繁主义者)和潜在可变的高斯过程模型(贝叶斯)进行了系统的比较研究。我们研究了这两个模型在优化数学函数以及结构和功能材料的特性中的功效,在该功能的特性中,我们观察到与问题维度和复杂性相关的性能差异。通过研究机器学习模型的预测性和不确定性估计功能,我们提供了观察到的性能差异的解释。我们的结果提供了有关在材料设计中可混合变量的频繁主义者和贝叶斯不确定性的机器学习模型之间选择的实用指导。

Data-driven design shows the promise of accelerating materials discovery but is challenging due to the prohibitive cost of searching the vast design space of chemistry, structure, and synthesis methods. Bayesian Optimization (BO) employs uncertainty-aware machine learning models to select promising designs to evaluate, hence reducing the cost. However, BO with mixed numerical and categorical variables, which is of particular interest in materials design, has not been well studied. In this work, we survey frequentist and Bayesian approaches to uncertainty quantification of machine learning with mixed variables. We then conduct a systematic comparative study of their performances in BO using a popular representative model from each group, the random forest-based Lolo model (frequentist) and the latent variable Gaussian process model (Bayesian). We examine the efficacy of the two models in the optimization of mathematical functions, as well as properties of structural and functional materials, where we observe performance differences as related to problem dimensionality and complexity. By investigating the machine learning models' predictive and uncertainty estimation capabilities, we provide interpretations of the observed performance differences. Our results provide practical guidance on choosing between frequentist and Bayesian uncertainty-aware machine learning models for mixed-variable BO in materials design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源