论文标题

通过结构约束深度学习模型来增强异质催化剂发现

Boosting Heterogeneous Catalyst Discovery by Structurally Constrained Deep Learning Models

论文作者

Korovin, Alexey N., Humonen, Innokentiy S., Samtsevich, Artem I., Eremin, Roman A., Vasilyev, Artem I., Lazarev, Vladimir D., Budennyy, Semen A.

论文摘要

新催化剂的发现是计算化学的重要主题之一,因为它有可能加速采用可再生能源。最近开发的深度学习方法,例如图形神经网络(GNNS)开放的新机会,以显着扩大新型高性能催化剂的范围。然而,由于模棱两可的连通性方案和节点和边缘的众多嵌入,特定晶体结构的图形表示并不是一个直接的任务。在这里,我们提出了GNN的嵌入改进,该改进已通过Voronoi Tesselation修改,并能够预测开放催化剂项目数据集中催化系统的能量。通过Voronoi镶嵌来计算图的富集,并将相应的触点实心角度和类型(直接或间接)视为边缘的特征,而Voronoi体积用作节点特征。辅助方法是通过内在的原子特性(电负性,周期和组位置)丰富节点表示。提出的修改使我们能够改善原始模型的平均绝对误差,最终误差等于“开放催化剂项目数据集”上每个原子的651 MeV,并且在金属中数据集中每个原子6 MeV。同样,通过考虑其他数据集,我们表明,明智的数据选择可以将误差降低到高于每个原子阈值20 MEV的值的值。

The discovery of new catalysts is one of the significant topics of computational chemistry as it has the potential to accelerate the adoption of renewable energy sources. Recently developed deep learning approaches such as graph neural networks (GNNs) open new opportunity to significantly extend scope for modelling novel high-performance catalysts. Nevertheless, the graph representation of particular crystal structure is not a straightforward task due to the ambiguous connectivity schemes and numerous embeddings of nodes and edges. Here we present embedding improvement for GNN that has been modified by Voronoi tesselation and is able to predict the energy of catalytic systems within Open Catalyst Project dataset. Enrichment of the graph was calculated via Voronoi tessellation and the corresponding contact solid angles and types (direct or indirect) were considered as features of edges and Voronoi volumes were used as node characteristics. The auxiliary approach was enriching node representation by intrinsic atomic properties (electronegativity, period and group position). Proposed modifications allowed us to improve the mean absolute error of the original model and the final error equals to 651 meV per atom on the Open Catalyst Project dataset and 6 meV per atom on the intermetallics dataset. Also, by consideration of additional dataset, we show that a sensible choice of data can decrease the error to values above physically-based 20 meV per atom threshold.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源