论文标题

基于伪价值的深神经网络,用于多状态生存分析

Pseudo value-based Deep Neural Networks for Multi-state Survival Analysis

论文作者

Rahman, Md Mahmudur, Purushotham, Sanjay

论文摘要

多状态生存分析(MSA)使用多状态模型来分析事件时间数据。在医疗应用中,MSA可以提供有关患者复杂疾病进展的见解。 MSA中的一个关键挑战是对多状态模型数量(例如过渡概率和状态职业概率)的精确预测。传统的多状态方法,例如Aalen-Johansen(AJ)估计量和基于COX的方法,分别受马尔可夫和比例危害假设的限制,对于做出特定于主题的预测而言是不可行的。 MSA的神经普通微分方程放宽了这些假设,但在计算上很昂贵,并且不会直接建模过渡概率。为了解决这些局限性,我们提出了一类新的基于伪值的深度学习模型,用于多态生存分析,在这里我们表明,旨在处理审查的伪值是自然的替代方法,可以自然替代估计从一致的估计器中得出的多状态模型数量。特别是,我们提供了一种算法来从一致的估计器中得出伪值,以直接预测受试者协变量的多状态生存量。合成和现实世界数据集的经验结果表明,我们提出的模型在各种审查设置下实现了最新的结果。

Multi-state survival analysis (MSA) uses multi-state models for the analysis of time-to-event data. In medical applications, MSA can provide insights about the complex disease progression in patients. A key challenge in MSA is the accurate subject-specific prediction of multi-state model quantities such as transition probability and state occupation probability in the presence of censoring. Traditional multi-state methods such as Aalen-Johansen (AJ) estimators and Cox-based methods are respectively limited by Markov and proportional hazards assumptions and are infeasible for making subject-specific predictions. Neural ordinary differential equations for MSA relax these assumptions but are computationally expensive and do not directly model the transition probabilities. To address these limitations, we propose a new class of pseudo-value-based deep learning models for multi-state survival analysis, where we show that pseudo values - designed to handle censoring - can be a natural replacement for estimating the multi-state model quantities when derived from a consistent estimator. In particular, we provide an algorithm to derive pseudo values from consistent estimators to directly predict the multi-state survival quantities from the subject's covariates. Empirical results on synthetic and real-world datasets show that our proposed models achieve state-of-the-art results under various censoring settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源