论文标题

观点上的双胞胎识别变化:深度卷积神经网络超过人类

Twin identification over viewpoint change: A deep convolutional neural network surpasses humans

论文作者

Parde, Connor J., Strehle, Virginia E., Banerjee, Vivekjyoti, Hu, Ying, Cavazos, Jacqueline G., Castillo, Carlos D., O'Toole, Alice J.

论文摘要

深度卷积神经网络(DCNN)在面部鉴定方面已经达到了人类水平的准确性(Phillips等,2018),尽管目前尚不清楚它们如何准确地区分高度相似的面孔。在这里,人类和DCNN执行了包括相同双胞胎在内的具有挑战性的面貌匹配任务。参与者(n = 87)查看了三种类型的面孔图像:同一身份,普通冒名顶替对(来自相似人口组的不同身份)和双胞胎冒名顶替对(相同的双胞胎兄弟姐妹)。任务是确定对是表现出同一人还是不同的人。身份比较在三个观点区分条件下进行了测试:正面至额叶至45度曲线,正面为90度。在每个观点 - 隔离条件下评估了与双胞胎爆炸器和一般冒名顶替者区分匹配的身份对的精度。人类对于一般撞击对比双重效率增长对更准确,并且准确性下降,一对图像之间的观点差异增加。通过介绍给人类的同一图像对测试了经过训练的面部识别的DCNN(Ranjan等,2018)。机器性能反映了人类准确性的模式,但除了一种条件以外,所有人的性能都处于或尤其是所有人的表现。在所有图像对类型中,比较了人与机器的相似性评分。该项目级分析表明,在九种图像对类型中的六种中,人类和机器的相似性等级显着相关[范围r = 0.38至r = 0.63],这表明人类对面部相似性的感知和DCNN之间的一般协议。这些发现也有助于我们理解DCNN的表现,以区分高对象的面孔,表明DCNN在人类或以上的水平上表现出色,并提出了人类和DCNN所使用的特征之间的均等程度。

Deep convolutional neural networks (DCNNs) have achieved human-level accuracy in face identification (Phillips et al., 2018), though it is unclear how accurately they discriminate highly-similar faces. Here, humans and a DCNN performed a challenging face-identity matching task that included identical twins. Participants (N=87) viewed pairs of face images of three types: same-identity, general imposter pairs (different identities from similar demographic groups), and twin imposter pairs (identical twin siblings). The task was to determine whether the pairs showed the same person or different people. Identity comparisons were tested in three viewpoint-disparity conditions: frontal to frontal, frontal to 45-degree profile, and frontal to 90-degree profile. Accuracy for discriminating matched-identity pairs from twin-imposters and general imposters was assessed in each viewpoint-disparity condition. Humans were more accurate for general-imposter pairs than twin-imposter pairs, and accuracy declined with increased viewpoint disparity between the images in a pair. A DCNN trained for face identification (Ranjan et al., 2018) was tested on the same image pairs presented to humans. Machine performance mirrored the pattern of human accuracy, but with performance at or above all humans in all but one condition. Human and machine similarity scores were compared across all image-pair types. This item-level analysis showed that human and machine similarity ratings correlated significantly in six of nine image-pair types [range r=0.38 to r=0.63], suggesting general accord between the perception of face similarity by humans and the DCNN. These findings also contribute to our understanding of DCNN performance for discriminating high-resemblance faces, demonstrate that the DCNN performs at a level at or above humans, and suggest a degree of parity between the features used by humans and the DCNN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源