论文标题

Bochner公式,功能不平等和普遍的RICCI流动

Bochner formulas, functional inequalities and generalized Ricci flow

论文作者

Kopfer, Eva, Streets, Jeffrey

论文摘要

由于Bochner公式针对梯度作用于梯度,我们在通用RICCI流动的溶液中表现出尖锐的普遍庞加莱和Log-Sobolev的不平等。使用两种形式的电势,我们定义了时空上的扭曲连接,该连接确定了框架束上适应的布朗尼运动,从而在路径空间上产生了适应的Malliavin梯度。我们为该操作员展示了一个Bochner公式,从而导致了普遍的RICCI流动,以普遍的Poincaré和Log-Sobolev类型的不平等表示相关的Malliavin梯度和Ornstein-Uhlenbeck操作员。

As a consequence of the Bochner formula for the Bismut connection acting on gradients, we show sharp universal Poincaré and log-Sobolev inequalities along solutions to generalized Ricci flow. Using the two-form potential we define a twisted connection on spacetime which determines an adapted Brownian motion on the frame bundle, yielding an adapted Malliavin gradient on path space. We show a Bochner formula for this operator, leading to characterizations of generalized Ricci flow in terms of universal Poincaré and log-Sobolev type inequalities for the associated Malliavin gradient and Ornstein-Uhlenbeck operator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源