论文标题
与线性深度图像先验的计算机断层扫描的贝叶斯实验设计
Bayesian Experimental Design for Computed Tomography with the Linearised Deep Image Prior
论文作者
论文摘要
我们根据单个稀疏试验扫描来研究自适应设计,以生成计算机断层扫描重建的有效扫描策略。我们使用线性化的深图像提出了一种新颖的方法。它允许将试验测量的信息纳入角度选择标准,同时保持共轭高斯线性模型的障碍。在具有优先方向的合成生成的数据集上,线性化倾角设计允许将扫描数减少到相对于等距角基线的30%。
We investigate adaptive design based on a single sparse pilot scan for generating effective scanning strategies for computed tomography reconstruction. We propose a novel approach using the linearised deep image prior. It allows incorporating information from the pilot measurements into the angle selection criteria, while maintaining the tractability of a conjugate Gaussian-linear model. On a synthetically generated dataset with preferential directions, linearised DIP design allows reducing the number of scans by up to 30% relative to an equidistant angle baseline.