论文标题

加速MRI重建的自适应扩散先验

Adaptive Diffusion Priors for Accelerated MRI Reconstruction

论文作者

Güngör, Alper, Dar, Salman UH, Öztürk, Şaban, Korkmaz, Yilmaz, Elmas, Gokberk, Özbey, Muzaffer, Çukur, Tolga

论文摘要

深度MRI重建通常是通过有条件模型进行的,这些模型会取消采样采集,以恢复与完全采样的数据一致的图像。由于有条件的模型接受了对成像运营商的了解的培训,因此它们可以显示可变操作员的概括不佳。相反,无条件的模型学习了从操作员分离的生成图像先验,以提高与成像运算符相关的域移位的可靠性。鉴于它们的样本忠诚度很高,最近的扩散模型特别有希望。然而,先前使用静态图像的推论可以次优。在这里,我们提出了MRI重建的第一个自适应扩散,Adadiff提高了针对域转移的性能和可靠性。 Adadiff利用了通过对抗映射在大型反向扩散步骤上通过对抗映射进行训练的有效扩散。在训练之后,执行了两阶段的重建:快速扩散阶段,该阶段通过受过训练的先验产生初始重建,以及一个适应阶段,通过在最小化数据矛盾损失之前更新结果,从而进一步完善了结果。关于多对比的大脑MRI的演示清楚地表明,Adadiff在域移动下的有条件和无条件方法的表现优于竞争的条件和无条件方法,并且在较高或质量范围内表现范围内表现。

Deep MRI reconstruction is commonly performed with conditional models that de-alias undersampled acquisitions to recover images consistent with fully-sampled data. Since conditional models are trained with knowledge of the imaging operator, they can show poor generalization across variable operators. Unconditional models instead learn generative image priors decoupled from the operator to improve reliability against domain shifts related to the imaging operator. Recent diffusion models are particularly promising given their high sample fidelity. Nevertheless, inference with a static image prior can perform suboptimally. Here we propose the first adaptive diffusion prior for MRI reconstruction, AdaDiff, to improve performance and reliability against domain shifts. AdaDiff leverages an efficient diffusion prior trained via adversarial mapping over large reverse diffusion steps. A two-phase reconstruction is executed following training: a rapid-diffusion phase that produces an initial reconstruction with the trained prior, and an adaptation phase that further refines the result by updating the prior to minimize data-consistency loss. Demonstrations on multi-contrast brain MRI clearly indicate that AdaDiff outperforms competing conditional and unconditional methods under domain shifts, and achieves superior or on par within-domain performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源