论文标题

通过Terahertz光耦合在Transmon Qubits中使用的单个纳米界面中可视化异质偶极子场

Visualizing heterogeneous dipole fields by terahertz light coupling in individual nano-junctions used in transmon qubits

论文作者

Kim, R. H. J., Park, J. M., Haeuser, S., Huang, C., Cheng, D., Koschny, T., Oh, J., Kopas, C., Cansizoglu, H., Yadavalli, K., Mutus, J., Zhou, L., Luo, L., Kramer, M., Wang, J.

论文摘要

超导量子计算的基本挑战是表征基础量子电路中的异质性和混乱。这些不均匀的分布通常会导致局部电场浓度,电荷散射,耗散和最终脱干。在电磁波耦合下,在单个纳米界面的电磁波耦合下探测深层次波长的电场分布,并将它们与界面和边界的结构缺陷相关联,这是约瑟夫森连接(JJ)中使用的结构缺陷。一个主要的障碍在于,传统的显微镜工具无法在纳米和Terahertz(“纳米THZ”量表上同时测量,这通常与纳米杂志中的频率依赖性电荷散射相关。在这里,我们直接可视化界面纳米偶极子近场分布的单个al/alo $ _ {x} $/al Al连接器中使用的transmon Qubits。我们的THZ纳米镜图像在电磁波结耦合响应中显示出显着的不对称性,表现为“热”尖峰空间电场结构,并与JJ JJ Fabrication Inside QUBIT设备中的多角度沉积过程中的缺陷边界相关联。不对称的纳米偶极电场对比也与区分“过冲”频率依赖性相关,该频率依赖性表征了纳米级的电荷散射和耗散,隐藏在地形,结构成像和空间平均技术的响应中。可以扩展连接偶极场和THZ电荷散射的真实空间映射,以引导量子纳米模式,以最终优化值一致的相干时间。

The fundamental challenge underlying superconducting quantum computing is to characterize heterogeneity and disorder in the underlying quantum circuits. These nonuniform distributions often lead to local electric field concentration, charge scattering, dissipation and ultimately decoherence. It is particularly challenging to probe deep sub-wavelength electric field distribution under electromagnetic wave coupling at individual nano-junctions and correlate them with structural imperfections from interface and boundary, ubiquitous in Josephson junctions (JJ) used in transmon qubits. A major obstacle lies in the fact that conventional microscopy tools are incapable of measuring simultaneous at nanometer and terahertz, "nano-THz" scales, which often associate with frequency-dependent charge scattering in nano-junctions. Here we directly visualize interface nano-dipole near-field distribution of individual Al/AlO$_{x}$/Al junctions used in transmon qubits. Our THz nanoscope images show a remarkable asymmetry across the junction in electromagnetic wave-junction coupling response that manifests as "hot" vs "cold" cusp spatial electrical field structures and correlates with defected boundaries from the multi-angle deposition processes in JJ fabrication inside qubit devices. The asymmetric nano-dipole electric field contrast also correlates with distinguishing, "overshoot" frequency dependence that characterizes the charge scattering and dissipation at nanoscale, hidden in responses from topographic, structural imaging and spatially-averaged techniques. The real space mapping of junction dipole fields and THz charge scattering can be extended to guide qubit nano-fabrication for ultimately optimizing qubit coherence times.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源