论文标题
数据驱动的饮用水网络中动态质量模型的识别
Data-Driven Identification of Dynamic Quality Models in Drinking Water Networks
论文作者
论文摘要
饮用水分配网络(WDN)中水质的传统控制和监测主要依赖于模型或工具箱驱动的方法,在这种方法中,人们认为网络拓扑和参数是已知的。相反,通用动态系统模型的系统识别(SYSID)算法寻求仅使用输入输出数据近似此类模型,而无需依赖网络参数。本文的目的是研究水质模型近似的Sysid算法。由于(i)复杂的水质和反应动力学以及(ii)Sysid算法的要求与水质动力学的特性之间的不匹配,因此该研究问题具有挑战性。在本文中,我们提出了仅使用输入输出实验数据和经典的Sysid方法识别WDN中水质模型的首次尝试,而又不知道任何WDN参数。引入了水质模型的特性,讨论了识别水质模型并给出补救解决方案时这些特性引起的随之而来的挑战。通过案例研究,我们证明了Sysid算法的适用性,在准确性和计算时间方面显示了相应的性能,并探讨了影响水质模型识别的可能因素。
Traditional control and monitoring of water quality in drinking water distribution networks (WDN) rely on mostly model- or toolbox-driven approaches, where the network topology and parameters are assumed to be known. In contrast, system identification (SysID) algorithms for generic dynamic system models seek to approximate such models using only input-output data without relying on network parameters. The objective of this paper is to investigate SysID algorithms for water quality model approximation. This research problem is challenging due to (i) complex water quality and reaction dynamics and (ii) the mismatch between the requirements of SysID algorithms and the properties of water quality dynamics. In this paper, we present the first attempt to identify water quality models in WDNs using only input-output experimental data and classical SysID methods without knowing any WDN parameters. Properties of water quality models are introduced, the ensuing challenges caused by these properties when identifying water quality models are discussed, and remedial solutions are given. Through case studies, we demonstrate the applicability of SysID algorithms, show the corresponding performance in terms of accuracy and computational time, and explore the possible factors impacting water quality model identification.