论文标题
天王星:无人飞机车辆的射频跟踪,分类和标识
URANUS: Radio Frequency Tracking, Classification and Identification of Unmanned Aircraft Vehicles
论文作者
论文摘要
关键基础设施的安全和安全问题正在增长,因为攻击者采用无人机作为攻击矢量在敏感空间中飞行的攻击矢量,例如机场,军事基地,城市中心和拥挤的地方。尽管将无人机用于物流,运输娱乐活动和商业应用,但由于违法行为和被限制的空域的入侵,它们的使用对运营商产生了严重的关注。在这种情况下,需要一个具有成本效益的实时框架来检测无人机的存在。在此贡献中,我们提出了一个称为天王星的有效基于射频的检测框架。我们利用射频/方向查找系统提供的实时数据,以及雷达,以检测,分类和识别无人机区域的无人机区域。我们采用多层感知器神经网络,以$ 90 $%的准确性来实时识别和分类无人机。对于跟踪任务,我们使用随机的森林模型来预测MSE $ \ of of the $ \ of0.29 $,MAE $ \ of0.04 $和$ r^2 \约0.93 $的无人机位置。此外,使用通用横向Mercator坐标进行坐标回归,以确保高精度。我们的分析表明,天王星是识别,分类和跟踪最关键基础架构运营商可以采用的理想框架。
Safety and security issues for Critical Infrastructures are growing as attackers adopt drones as an attack vector flying in sensitive airspaces, such as airports, military bases, city centers, and crowded places. Despite the use of UAVs for logistics, shipping recreation activities, and commercial applications, their usage poses severe concerns to operators due to the violations and the invasions of the restricted airspaces. A cost-effective and real-time framework is needed to detect the presence of drones in such cases. In this contribution, we propose an efficient radio frequency-based detection framework called URANUS. We leverage real-time data provided by the Radio Frequency/Direction Finding system, and radars in order to detect, classify and identify drones (multi-copter and fixed-wings) invading no-drone zones. We adopt a Multilayer Perceptron neural network to identify and classify UAVs in real-time, with $90$% accuracy. For the tracking task, we use a Random Forest model to predict the position of a drone with an MSE $\approx0.29$, MAE $\approx0.04$, and $R^2\approx 0.93$. Furthermore, coordinate regression is performed using Universal Transverse Mercator coordinates to ensure high accuracy. Our analysis shows that URANUS is an ideal framework for identifying, classifying, and tracking UAVs that most Critical Infrastructure operators can adopt.