论文标题

通过张量网络机器学习和量子纠缠无监督的识别信息功能的识别

Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations

论文作者

Bai, Sheng-Chen, Tang, Yi-Cheng, Ran, Shi-Ju

论文摘要

鉴于在黑板上画了白色鞋子的图像,白色像素如何被认为是人为识别鞋子而没有任何像素的标签信息的信息?在这里,我们从张量网络(TN)机器学习和量子纠缠的角度研究了这样的``白鞋''识别问题。利用一种生成型TN捕获特征作为量子幅度的概率分布,我们提出了一个无监督的识别方案的信息特征方案,其纠缠熵(EE)的变化是由设计的测量引起的。这样,给定的样本,其特征的值在统计上是毫无意义的,它映射到统计上表征信息增益的EE的变化。我们表明,EE变化确定了对识别该特定样本至关重要的功能,并且EE本身揭示了TN模型代表的概率的信息分布。变化的迹象进一步揭示了特征之间的纠缠结构。我们在带状图像的玩具数据集,手绘数字的MNIST数据集,时尚文章图片的时尚数据集以及脑细胞的图像上测试了计划的有效性。我们的方案为量子启发和解释的无监督学习开辟了途径,该学习可以应用于例如图像分割和对象检测。

Given an image of a white shoe drawn on a blackboard, how are the white pixels deemed (say by human minds) to be informative for recognizing the shoe without any labeling information on the pixels? Here we investigate such a ``white shoe'' recognition problem from the perspective of tensor network (TN) machine learning and quantum entanglement. Utilizing a generative TN that captures the probability distribution of the features as quantum amplitudes, we propose an unsupervised recognition scheme of informative features with the variations of entanglement entropy (EE) caused by designed measurements. In this way, a given sample, where the values of its features are statistically meaningless, is mapped to the variations of EE that statistically characterize the gain of information. We show that the EE variations identify the features that are critical to recognize this specific sample, and the EE itself reveals the information distribution of the probabilities represented by the TN model. The signs of the variations further reveal the entanglement structures among the features. We test the validity of our scheme on a toy dataset of strip images, the MNIST dataset of hand-drawn digits, the fashion-MNIST dataset of the pictures of fashion articles, and the images of brain cells. Our scheme opens the avenue to the quantum-inspired and interpreted unsupervised learning, which can be applied to, e.g., image segmentation and object detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源