论文标题

在高维球体上布朗尼运动的分离截止现象上

On the separation cut-off phenomenon for Brownian motions on high dimensional spheres

论文作者

Arnaudon, Marc, Coulibaly-Pasquier, Koléhé Abdoulaye, Miclo, Laurent

论文摘要

本说明证明,分离倾向与均匀分布的收敛有时突然发生在Ln(n)/N附近(由2)布朗尼运动(2)在具有高尺寸n的球体上。这些论点基于一种新的且基本的扰动方法,用于估计在较小的噪声环境中打击时间。因此获得的定量估计值应用于作者在特殊文章中构建的强固定时间,以推断通道的截止现象。

This note proves that the separation convergence towards the uniform distribution abruptly occurs at times around ln(n)/n for the (time-accelerated by 2) Brownian motion on the sphere with a high dimension n. The arguments are based on a new and elementary perturbative approach for estimating hitting times in a small noise context. The quantitative estimates thus obtained are applied to the strong stationary times constructed in a privious article by the authors to deduce the wanted cut-off phenomenon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源