论文标题
通过深度学习和不确定性量化,自动检测语义分割数据集中标签错误
Automated Detection of Label Errors in Semantic Segmentation Datasets via Deep Learning and Uncertainty Quantification
论文作者
论文摘要
在这项工作中,我们首次提出了一种用于检测具有语义分割图像数据集中标签错误的方法,即Pixel-Wise类标签。语义细分数据集的注释获取是耗时的,需要大量的人工劳动。特别是,审查过程是耗时的,人类很容易忽略标签错误。后果是有偏见的基准,在极端情况下,也在此类数据集上训练的深神经网络(DNN)的性能降解。语义分割的DNN会产生像素的预测,这使得通过不确定性定量检测标签错误是一个复杂的任务。在预测的连接组件之间的过渡时,不确定性特别明显。通过将不确定性考虑到预测组件的水平,我们可以使用DNN以及组件级的不确定性定量,以检测标签误差。我们提出了一种原则性的方法,可以通过从Carla驾驶模拟器中提取的数据集中从CityScapes数据集中删除标签检测的标签错误检测任务,在后一种情况下,我们可以控制标签。我们的实验表明,我们的方法能够在控制错误标签误差检测的数量时检测到绝大多数标签错误。此外,我们将方法应用于计算机视觉社区经常使用的语义细分数据集,并提出标签错误的集合以及示例统计信息。
In this work, we for the first time present a method for detecting label errors in image datasets with semantic segmentation, i.e., pixel-wise class labels. Annotation acquisition for semantic segmentation datasets is time-consuming and requires plenty of human labor. In particular, review processes are time consuming and label errors can easily be overlooked by humans. The consequences are biased benchmarks and in extreme cases also performance degradation of deep neural networks (DNNs) trained on such datasets. DNNs for semantic segmentation yield pixel-wise predictions, which makes detection of label errors via uncertainty quantification a complex task. Uncertainty is particularly pronounced at the transitions between connected components of the prediction. By lifting the consideration of uncertainty to the level of predicted components, we enable the usage of DNNs together with component-level uncertainty quantification for the detection of label errors. We present a principled approach to benchmarking the task of label error detection by dropping labels from the Cityscapes dataset as well from a dataset extracted from the CARLA driving simulator, where in the latter case we have the labels under control. Our experiments show that our approach is able to detect the vast majority of label errors while controlling the number of false label error detections. Furthermore, we apply our method to semantic segmentation datasets frequently used by the computer vision community and present a collection of label errors along with sample statistics.