论文标题

纠缠熵和自由费米的模块化哈密顿量,带有变形

Entanglement Entropy and Modular Hamiltonian of free fermion with deformations on a torus

论文作者

He, Song, Liu, Zhang-Cheng, Sun, Yuan

论文摘要

在这项工作中,我们对模块化的哈密顿量进行了扰动,以在带有三个典型变形的圆环上获得自由费用理论的纠缠熵,例如,t \ bar {t}变形,局部双线性操作员变形和质量变形。对于t \ bar {t}变形,我们发现纠缠熵的领先顺序校正与未变形的模块化汉密尔顿的期望值成正比。作为检查,在高/低温度的极限中,纠缠熵与文献中的复制品技巧获得的纠缠相吻合。遵循相同的扰动策略,我们通过将局部双线操作员的变形插入移动的镜像设置中,从而获得自由费米昂真空状态的纠缠熵。在统一加速的镜子中,纠缠熵的一阶和二阶校正在晚期限制中消失。对于质量变形,我们将纠缠熵推导为一阶变形,并评论二阶校正。

In this work, we perturbatively calculate the modular Hamiltonian to obtain the entanglement entropy in a free fermion theory on a torus with three typical deforma- tions, e.g., T\bar{T} deformation, local bilinear operator deformation, and mass deformation. For T\bar{T} deformation, we find that the leading order correction of entanglement entropy is proportional to the expectation value of the undeformed modular Hamiltonian. As a check, in the high/low-temperature limit, the entanglement entropy coincides with that obtained by the replica trick in the literature. Following the same perturbative strategy, we obtain the entanglement entropy of the free fermion vacuum state up to second-order by inserting a local bilinear operator deformation in a moving mirror set- ting. In the uniformly accelerated mirror, the first-order and second-order correction of entanglement entropy vanishes in the late time limit. For mass deformation, we derive the entanglement entropy up to first-order deformation and comment on the second-order correction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源