论文标题
学习适应性网状精炼的强大标记政策
Learning robust marking policies for adaptive mesh refinement
论文作者
论文摘要
在这项工作中,我们重新审查了标准自适应有限元方法(AFEM)中做出的标记决定。经验表明,幼稚的标记策略会导致对自适应网格改进(AMR)的计算资源的效率低下。因此,在实践中使用AFEM通常涉及临时或耗时的离线参数调整来为标记子例程设置适当的参数。为了解决这些实际问题,我们将AMR作为马尔可夫决策过程,在该过程中可以在运行时在运行时选择完善参数,而无需专家用户进行预先调整。在这个新的范式中,还可以通过标记策略适应改进参数,该标记策略可以使用增强学习中的方法进行优化。我们使用泊松方程来证明我们在$ h $和$ hp $的基准问题上的技术,我们的实验表明,对于许多经典的AFEM应用程序,均未发现卓越的标记政策。此外,这项工作的意外观察结果是,对一个PDE家族进行培训的标记政策有时足够强大,足以在训练家庭之外的问题上表现出色。为了进行插图,我们表明,在只有一个重新入口的2D域中训练的简单$ HP $投资政策可以在更复杂的2D域甚至3D域中部署,而没有大幅度的性能损失。为了复制和更广泛的采用,我们伴随着这项工作的开源实施方法。
In this work, we revisit the marking decisions made in the standard adaptive finite element method (AFEM). Experience shows that a naïve marking policy leads to inefficient use of computational resources for adaptive mesh refinement (AMR). Consequently, using AFEM in practice often involves ad-hoc or time-consuming offline parameter tuning to set appropriate parameters for the marking subroutine. To address these practical concerns, we recast AMR as a Markov decision process in which refinement parameters can be selected on-the-fly at run time, without the need for pre-tuning by expert users. In this new paradigm, the refinement parameters are also chosen adaptively via a marking policy that can be optimized using methods from reinforcement learning. We use the Poisson equation to demonstrate our techniques on $h$- and $hp$-refinement benchmark problems, and our experiments suggest that superior marking policies remain undiscovered for many classical AFEM applications. Furthermore, an unexpected observation from this work is that marking policies trained on one family of PDEs are sometimes robust enough to perform well on problems far outside the training family. For illustration, we show that a simple $hp$-refinement policy trained on 2D domains with only a single re-entrant corner can be deployed on far more complicated 2D domains, and even 3D domains, without significant performance loss. For reproduction and broader adoption, we accompany this work with an open-source implementation of our methods.