论文标题
探索3D小波散射转换系数,用于线强度映射测量
Exploration of 3D wavelet scattering transform coefficients for line-intensity mapping measurements
论文作者
论文摘要
在大规模结构研究的背景下,小波散射变换(WST)最近引起了人们的关注,这是汇总统计数据的可能发生者,该统计数据封装了超出传统功率谱系的非高斯性。这项工作研究了三维线条强度映射测量测量值的三维固体谐波WST,该测量值将由CO映射阵列项目(COMAP)的当前和建议阶段进行。 WST系数在无噪声CO线强度模拟的背景下显示出可解释的行为。即使在COMAP的探路阶段,宇宙学$ z \ sim3 $信号对这些系数的贡献也可以原则上检测到。使用峰值斑点方法生成大量的模拟并结合了观测噪声,我们可以通过数值估计协方差矩阵,并表明仔细选择WST超参数以及重新缩放或降低的系数集是保持协方差良好条件的必要条件。 Fisher的预测表明,即使是$ \ ell $ $ $ $ $ $ $ \ ell $的WST系数也会显示出约束功率,即使具有相似的检测意义,也可能超过功率谱的限制功率。完整的WST甚至可以在功率谱和体素强度分布的组合上改善参数约束,这表明它独特地封装了有关线强度场的形状信息。但是,实际应用迫切需要在协方差和互相关等关键环境中进一步了解WST。
The wavelet scattering transform (WST) has recently gained attention in the context of large-scale structure studies, being a possible generator of summary statistics encapsulating non-Gaussianities beyond the reach of the conventional power spectrum. This work examines the three-dimensional solid harmonic WST in the context of a three-dimensional line-intensity mapping measurement to be undertaken by current and proposed phases of the CO Mapping Array Project (COMAP). The WST coefficients demonstrate interpretable behaviour in the context of noiseless CO line-intensity simulations. The contribution of the cosmological $z\sim3$ signal to these coefficients is also detectable in principle even in the Pathfinder phase of COMAP. Using the peak-patch method to generate large numbers of simulations and incorporating observational noise, we numerically estimate covariance matrices and show that careful choices of WST hyperparameters and rescaled or reduced coefficient sets are both necessary to keep covariances well-conditioned. Fisher forecasts show that even a reduced `shapeless' set of $\ell$-averaged WST coefficients show constraining power that can exceed that of the power spectrum alone even with similar detection significance. The full WST could improve parameter constraints even over the combination of the power spectrum and the voxel intensity distribution, showing that it uniquely encapsulates shape information about the line-intensity field. However, practical applications urgently require further understanding of the WST in key contexts like covariances and cross-correlations.