论文标题

逆源问题,具有分数扩散方程的后验边界测量

Inverse source problem with a posteriori boundary measurement for fractional diffusion equations

论文作者

Janno, Jaan, Kian, Yavar

论文摘要

在本文中,我们研究了从\ textit {a posteriori}边界测量的时间段扩散方程的逆源问题。利用这些方程式的记忆效应,我们解决了几类空​​间或依赖时间源项的这些反问题。我们还证明了从这种测量中的一般时空依赖性分离变量源项的独特确定。我们的方法基于对时间分解扩散方程解的边界痕迹的拉普拉斯变换的奇异性的研究。

In this article we study inverse source problems for time-fractional diffusion equations from \textit{a posteriori} boundary measurement. Using the memory effect of these class of equations, we solve these inverse problems for several class of space or time dependent source terms. We prove also the unique determination of a general class of space-time dependent separated variables source terms from such measurement. Our approach is based on the study of singularities of the Laplace transform in time of boundary traces of solutions of time-fractional diffusion equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源