论文标题

收入数据的参数分位数回归

Parametric quantile regression for income data

论文作者

Saulo, Helton, Vila, Roberto, Borges, Giovanna V., Bourguignon, Marcelo

论文摘要

单变量正常回归模型是在许多经济学领域广泛应用的统计工具。然而,收入数据具有不对称的行为,最好由非正常分布建模。收入的建模在确定工人的收入以及劳动经济学的重要研究主题方面起着重要作用。因此,这项工作的目的是提出基于两个重要的不对称收入分布的参数分位数回归模型,即Dagum和Singh-Maddala分布。所提出的分位数模型是基于原始分布的重新聚体化,通过插入分位数参数。我们介绍了重新聚集体,分布的某些属性以及及其推理方面的分位数回归模型。考虑到最大似然估计绩效评估以及对两个残差的经验分布进行分析,我们进行了蒙特卡洛模拟研究。蒙特卡洛的结果表明,这两种模型都符合预期的结果。我们将拟议的分位数回归模型应用于智利统计研究所提供的家庭收入数据集。我们表明,在模型拟合方面,两个提出的模型都具有良好的性能。因此,我们得出的结论是,结果有利于使用Singh-Maddala和Dagum分数回归模型来用于积极的不对称数据,例如收入数据。

Univariate normal regression models are statistical tools widely applied in many areas of economics. Nevertheless, income data have asymmetric behavior and are best modeled by non-normal distributions. The modeling of income plays an important role in determining workers' earnings, as well as being an important research topic in labor economics. Thus, the objective of this work is to propose parametric quantile regression models based on two important asymmetric income distributions, namely, Dagum and Singh-Maddala distributions. The proposed quantile models are based on reparameterizations of the original distributions by inserting a quantile parameter. We present the reparameterizations, some properties of the distributions, and the quantile regression models with their inferential aspects. We proceed with Monte Carlo simulation studies, considering the maximum likelihood estimation performance evaluation and an analysis of the empirical distribution of two residuals. The Monte Carlo results show that both models meet the expected outcomes. We apply the proposed quantile regression models to a household income data set provided by the National Institute of Statistics of Chile. We showed that both proposed models had a good performance both in terms of model fitting. Thus, we conclude that results were favorable to the use of Singh-Maddala and Dagum quantile regression models for positive asymmetric data, such as income data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源