论文标题
DeepFake视频检测与时空辍学变压器
Deepfake Video Detection with Spatiotemporal Dropout Transformer
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
While the abuse of deepfake technology has caused serious concerns recently, how to detect deepfake videos is still a challenge due to the high photo-realistic synthesis of each frame. Existing image-level approaches often focus on single frame and ignore the spatiotemporal cues hidden in deepfake videos, resulting in poor generalization and robustness. The key of a video-level detector is to fully exploit the spatiotemporal inconsistency distributed in local facial regions across different frames in deepfake videos. Inspired by that, this paper proposes a simple yet effective patch-level approach to facilitate deepfake video detection via spatiotemporal dropout transformer. The approach reorganizes each input video into bag of patches that is then fed into a vision transformer to achieve robust representation. Specifically, a spatiotemporal dropout operation is proposed to fully explore patch-level spatiotemporal cues and serve as effective data augmentation to further enhance model's robustness and generalization ability. The operation is flexible and can be easily plugged into existing vision transformers. Extensive experiments demonstrate the effectiveness of our approach against 25 state-of-the-arts with impressive robustness, generalizability, and representation ability.