论文标题
部分可观测时空混沌系统的无模型预测
Restriction theorem for the Fourier-Hermite transform associated with the normalized Hermite polynomials and the Ornstein-Uhlenbeck-Schrödinger equation
论文作者
论文摘要
在本文中,我们证明了Stein-Tomas和srtichartz的模拟定理对与标准化的Hermite多项式相关的傅里叶式转换的离散表面限制,并获得了Ornstein-uhlenbeck Opertotor $ l = - \ frac+freac+frac+frac+frac+frac+frac+frac+frac+frac+frac+frac+frac+freac+frac {1 x,\ nabla \ rangle $ on $ \ mathbb {r}^n $。此外,我们显示了Strichartz估计中常数的最佳行为,这是大量函数的限制。
In this article, we prove the analogue theorems of Stein-Tomas and Srtichartz on the discrete surface restrictions of Fourier-Hermite transforms associated with the normalized Hermite polynomials and obtain the Strichartz estimate for the system of orthonormal functions for the Ornstein-Uhlenbeck operator $L=-\frac{1}{2}Δ+\langle x, \nabla\rangle$ on $\mathbb{R}^n$. Further, we show an optimal behavior of the constant in the Strichartz estimate as limit of a large number of functions.